Obtaining r₀ parameters for HF calculations of alpha's from odd-A and odd-odd nuclei Yurdanur Akovali Oak Ridge National Laboratory In order to calculate hindrance factors for alpha's from an odd-A and from an odd-odd nucleus, the alpha-hindrance factors program requires a r_0 parameter as an input. These parameters are chosen from the r_0 values calculated for the even-even nuclei (see Y.A.Akovali, Nucl.Data Sheets 84,1 (1998)). r. parameters calculated from a decays of even-even (1) For an even Z, odd N nucleus, the r_0 parameters may be chosen as the average of the neighboring N-1 and N+1 isotopes: = $$\frac{1}{2}$$ [r₀(Z,N-1) + r₀(Z,N+1)] example: o to parameters for odd-mass Rm (2:86) isotopes Even Z, Odd N: e.g., 183Pt | 182 Pt 104 | 183 Pt 105 | 184 Pt 106 | 185 Pt 107 | 185 Pt 108 | |----------------------------------|---|---|----------------------------------|---| | Z-=78 | Z=78 | | Z=78 | Z=78 | | ¹⁸² Au ¹⁰³ | ¹⁸³ Au ¹⁰⁴ | ¹⁸⁴ Au ¹⁰⁵ | ¹⁸⁵ Au ¹⁰⁶ | ¹⁸⁶ Au ¹⁰⁷ | | Z=79 | Z=79 | Z=79 | Z=79 | Z=79 | | ¹⁸² Hg ¹⁰² | ¹⁸³ Hg ¹⁰³ | ¹⁸⁴ Hg ¹⁰⁴ | ¹⁸⁵ Hg ¹⁰⁵ | ¹⁸⁶ Hg ¹⁰⁶ | | z=80 | z=80 | z=80 | z=80 | z=80 | Constant Z; interpolate N $1/2[r0(Z,N-1)+r0(Z,N+1)]-TOI\left(\ {} \right) \ and \ ORNL\left(\spadesuit \right)$ (2) For odd Z nuclei, the r0 plots are chosen to be in between the r_0 curves for the neighboring even-even nuclei. The r_0 's for odd Z, even N then is the average of r_0 's for Z+1 and Z-1 isotones: $$r_0$$ (odd Z,even N) = $$\frac{1}{2}$$ [r₀(Z+1,N) + r₀(Z-1,N)] · r. parameters for odd Z, even N At isotopes ## Odd Z, Even N: e.g., 183Au | 182 Pt 104 | 183 Pt 105 | 184 Pţ 106 | 185 Pt 107 | 185 P †108 | |----------------------------------|---|---|---|---| | Z=78 | Z=78 | Z=78 | Z=78 | Z=78 | | ¹⁸² Au ¹⁰³ | | ¹⁸⁴ Au ¹⁰⁵ | ¹⁸⁵ Au ¹⁰⁶ | ¹⁸⁶ Au ¹⁰⁷ | | Z=79 | | Z=79 | Z=79 | Z=79 | | ¹⁸² Hg ¹⁰² | ¹⁸³ Hg ¹⁰³ | ¹⁸⁴ Hg ¹⁰⁴ | ¹⁸⁵ Hg ¹⁰⁵ | ¹⁸⁶ Hg ¹⁰⁶ | | Z=80 | z=80 | ^{Z=80} ★ | Z=80 | z=80 | Nearest even-even neighbors if A constant for each column ``` ◆ ORNL: Constant N, interpolate Z: 1/2[r0(Z-1,N)+r0(Z+1,N)] ★ TOI: use 4 nearest neighbors (interpolate Z and N): 1/4[r0(Z-1,N)+r0(Z-1,N+2)+r0(Z+1,N-2)+r0(Z+1,N)] =1/2[r0(Z-1,N+1)+r0(Z+1,N-1)] ``` (3) For odd Z-odd N nuclei, the r_o curves for the odd Z nuclei described in above are used. As it is done for even-even nuclei, r₀'s for the odd N nuclei are the average of ro's for the adjacent even N nuclei with the same Z number: $$= \frac{1}{2} [r_0(Z,N+1) + r_0(Z,N-1)]$$ This is equivalent to averaging four r_0 's of adjacent r_0 (odd Z, odd N) even-even nuclei. r_0 (odd Z, odd N) = $$1/4 \{r_0(Z+1,N+1) + r_0(Z+1,N-1) + r_0(Z-1,N+1) + r_0(Z-1,N-1)\}$$ example: 1. parameters for odd-odd At isotopes ## Odd Z, Odd N: e.g., 184Au | 182 Pt 104 | 183 Pt 105 | 184 Pt 106 Z=78 ★ | 185 Pt 107 | 185 Pt 108 | |--|--|---|--|--| | Z=78 | Z=78 | | Z=78 | Z=78 | | ¹⁸² Au ¹⁰³ | ¹⁸³ Au ¹⁰⁴ | | ¹⁸⁵ Au ¹⁰⁶ | ¹⁸⁶ Au ¹⁰⁷ | | Z=79 | Z=79 | | Z=79 | Z=79 | | ¹⁸² Hg ¹⁰²
z=80 | ¹⁸³ Hg ¹⁰³
z=80 | ¹⁸⁴ Hg ¹⁰⁴
Z=80
★ | ¹⁸⁵ Hg ¹⁰⁵
Z=80 | ¹⁸⁶ Hg ¹⁰⁶
Z=80 | Nearest even-even neighbors if A constant for each column ``` ◆ ORNL: Interpolate N, interpolate Z: 1/2[r0(Z,N+1)+r0(Z,N-1)] =1/4[r0(Z-1,N+1)+r0(Z-1,N-1)+r0(Z+1,N+1)+r0(Z+1,N-1)] ★ TOI: Interpolate N, interpolate Z (use 2 nearest neighbors): 1/2[r0(Z-1,N+1)+r0(Z+1,N-1)] ``` The evaluators must use their judgments, and may exclude any of the r0's for the adjacent even-even nuclei in these averaging, depending on their accuracies, preciseness, and fit to systematic trend.